organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(4R,6S,7S,8S,8aS)-6-Ethyl-7,8-dihydroxy-4-methyl-1,2,3,5,6,7,8,8a-octahydroindolizin-4-ium iodide

Viktor Vrábel,^a* Július Sivý,^b Ľubomír Švorc,^a Peter Šafář^c and lozefína Žužiová^c

^aInstitute of Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, SK-812 37 Bratislava, Slovak Republic 81237, ^bInstitute of Mathematics and Physics, Faculty of Mechanical Engineering, Slovak Technical University, Namestie slobody 17, SK-812 31 Bratislava, Slovak Republic 81231, and ^cInstitute of Organic Chemistry, Catalysis and Petrochemistry, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, SK-812 37 Bratislava, Slovak Republic 81237 Correspondence e-mail: viktor.vrabel@stuba.sk

Received 18 November 2011; accepted 28 November 2011

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.004 Å; R factor = 0.019; wR factor = 0.049; data-to-parameter ratio = 23.6.

The title compound, $C_{11}H_{22}NO_2^+ \cdot I^-$, is a chiral molecule with five stereogenic centres. The absolute configuration was assigned from the synthesis and confirmed by the structure determination. The central six-membered ring of the indolizine system adopts a chair conformation, with two atoms displaced by -0.690(2) and 0.550(2) Å from the plane of the other four atoms. The conformation of the pyrrolidine ring is close to that of an envelope, with the flap atom displaced by 0.563 (2) Å from the plane of the remaining four atoms. In the crystal, there are two O−H···I hydrogen bonds.

Related literature

For the biological activity of indolizine derivatives, see: Gubin et al. (1992); Gupta et al. (2003); Malonne et al. (1998); Medda et al. (2003); Nardelli (1983); Pearson & Guo (2001); Ruprecht et al. (1989). For puckering analysis, see: Cremer & Pople (1975). For the preparation, see: Šafář et al. (2010). For related structures, see: Clark & Reid (1995); Pedersen (1967).

Experimental

Crystal data $C_{11}H_{22}NO_{2}^{+}\cdot I^{-}$ $M_r = 327.20$

Monoclinic, P21 a = 8.18603 (14) Å

b = 10.82977 (14) Å	
c = 8.19874 (13) Å	
$\beta = 110.3688 \ (19)^{\circ}$	
V = 681.39 (2) Å ³	
Z = 2	

Data collection

Oxford Diffraction Gemini R CCD	
diffractometer	
Absorption correction: multi-scan	
(CrysAlis PRO; Oxford	
Diffraction, 2009)	
$T_{\min} = 0.520, \ T_{\max} = 0.638$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.019$	H-atom parameters constrained
$wR(F^2) = 0.049$	$\Delta \rho_{\rm max} = 0.64 \ {\rm e} \ {\rm \AA}^{-3}$
S = 0.91	$\Delta \rho_{\rm min} = -0.69 \text{ e } \text{\AA}^{-3}$
3330 reflections	Absolute structure: Flack (1983),
141 parameters	1359 Friedel pairs
1 restraint	Flack parameter: -0.026 (17)

Mo $K\alpha$ radiation $\mu = 2.34 \text{ mm}^{-1}$

 $0.30 \times 0.25 \times 0.20$ mm

18648 measured reflections 3330 independent reflections

3176 reflections with $I > 2\sigma(I)$

T = 298 K

 $R_{\rm int} = 0.020$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - H \cdot \cdot \cdot A$
$\begin{array}{c} O1 - H1 \cdots I1^{i} \\ O2 - H2 \cdots I1^{ii} \end{array}$	0.82	2.80	3.6187 (18)	173
	0.82	2.67	3.4798 (16)	172

Symmetry codes: (i) x + 1, y, z + 1; (ii) -x + 1, $y - \frac{1}{2}$, -z + 1.

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2001); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2009) and WinGX (Farrugia, 1999).

The authors thank the Grant Agency of Slovak Republic (grant Nos. 1/0429/11, 1/0679/11) and the Slovak Research and Development Agency (under contract No. APVV-0204-10) for financial support of this research program.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2323).

References

Brandenburg, K. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany.

Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1362.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.

Gubin, J., Lucchetti, J., Mahaux, J., Nisato, D., Rosseels, G., Clinet, M., Polster, P. & Chatelain, P. (1992). J. Med. Chem. 35, 981-988.

Gupta, S. P., Mathur, A. N., Nagappa, A. N., Kumar, D. & Kumaran, S. (2003). Eur. J. Med. Chem. 38, 867-873.

Malonne, H., Hanuise, J. & Fontaine, J. (1998). Pharm. Pharmacol. Commun. 4. 241-243.

Medda, S., Jaisankar, P., Manna, R. K., Pal, B., Giri, V. S. & Basu, M. K. (2003). J. Drug Target. 11, 123-128.

Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.

Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.

Pearson, W. H. & Guo, L. (2001). Tetrahedron Lett. 42, 8267-8271.

Pedersen, B. F. (1967). Acta Chem. Scand. 21, 1415-1424.

Ruprecht, R. M., Mullaney, S., Andersen, J. & Bronson, R. (1989). J. Acquir. Immune Defic. Syndr. 2, 149–157.

Šafář, P., Žužiová, J., Tóthová, E., Marchalín, Š., Prónayová, N., Švorc, Ľ., Vrábel, V., Comesse, S. & Daich, A. (2010). *Tetrahedron Asymmetry*, 21, 623–630. Sheldrick, G. M. (2008). Acta Cryst. A**64**, 112–122. Spek, A. L. (2009). Acta Cryst. D**65**, 148–155. supplementary materials

Acta Cryst. (2011). E67, o3520-o3521 [doi:10.1107/S1600536811051099]

(4*R*,6*S*,7*S*,8*S*,8a*S*)-6-Ethyl-7,8-dihydroxy-4-methyl-1,2,3,5,6,7,8,8a-octahydroindolizin-4-ium iod-ide

V. Vrábel, J. Sivý, L. Svorc, P. Safár and J. Zuziová

Comment

Indolizine derivatives have been found to possess a variety of biological activities such as antiinflammatory (Malonne et al., 1998), antiviral (Medda et al., 2003), and antitumor (Pearson & Guo, 2001) activities. They have also shown to be calcium entry blockers (Gupta et al., 2003). As such, indolizines are important synthetic targets in view of developing new pharmaceuticals for the treatment of cardiovascular diseases (Gubin et al., 1992) and HIV infections (Ruprecht et al., 1989). Based on these facts and in continuation of our interest in developing simple and efficient route for the synthesis of novel indolizine derivatives, we report here the synthesis, molecular and crystal structure of the title compound. The molecular structure of the compound and the atom labeling scheme are shown in Fig. 1. The absolute configuration was established by synthesis and confirmed by the structure determination. The expected stereochemistry of atoms N1, C5, C6, C7 and C8 was confirmed as R,S,S,S and S, respectively (Fig.1). The central six-membered N-heterocyclic ring is not planar and adopts a chair conformation (Cremer & Pople, 1975). A calculation of least-squares planes shows that this ring is puckered in such a manner that the four atoms C6, C7, N1 and C9 are coplanar within 0.022 (2) Å, while atoms C8 and C5 are displaced from this plane on opposite sides, with out-of-plane displacements of -0.690 (2) and 0.550 (2) Å, respectively. The pyrrolidine ring attached to the indolizine ring system has envelope conformation, with atom N1 on the flap. The maximum deviation from planarity for N1 is -0.563 (2) Å. The two aromatic rings are almost perpendicular to each other. The dihedral angle between the plane of the four atoms C2, C3, C4 and C5 of pyrrolidine ring and the plane of the four atoms C6, C7, N1 and C9 forming the base of the chair conformation is 89.6 (1)°. Intermolecular O1-H1…I1 and O2-H2…I1 hydrogen bonds link the molecules into extended chains running along the b axis (Table 1. and Figure 2.).

Experimental

The title compound was prepared according to a standard protocol described in literature (Šafář et al., 2010).

Refinement

All H atoms were positioned with idealized geometry using a riding model with C—H distances in the range 0.93 - 0.98 Å and O—H distance 0.82 Å. The $U_{iso}(H)$ values were set at $1.5U_{eq}(C$ -methyl,O) and $1.2U_{eq}($ other C atoms)

Figures

Fig. 1. Molecular structure of the title compound showing the atom labeling scheme. Displacement ellipsoids are drawn at the 50% probability level (Brandenburg, 2001).

Fig. 2. Packing view of the title compound. Molecular chains along b are generated by O–H…I hydrogen bonds which are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted.

(4R,6S,7S,8S,8aS)-6-Ethyl-7,8-dihydroxy- 4-methyl-1,2,3,5,6,7,8,8a-octahydroindolizin-4-ium iodide

Crystal data

$C_{11}H_{22}NO_2^+ \cdot \Gamma$	F(000) = 328
$M_r = 327.20$	$D_{\rm x} = 1.595 {\rm ~Mg~m}^{-3}$
Monoclinic, <i>P</i> 2 ₁	Mo K α radiation, $\lambda = 0.71073$ Å
Hall symbol: P 2yb	Cell parameters from 3330 reflections
a = 8.18603 (14) Å	$\theta = 3.6 - 29.4^{\circ}$
b = 10.82977 (14) Å	$\mu = 2.34 \text{ mm}^{-1}$
c = 8.19874 (13) Å	T = 298 K
$\beta = 110.3688 \ (19)^{\circ}$	Prism, colourless
$V = 681.39 (2) \text{ Å}^3$	$0.30 \times 0.25 \times 0.20 \text{ mm}$
Z = 2	

Data collection

Oxford Diffraction Gemini R CCD diffractometer	3330 independent reflections
Radiation source: fine-focus sealed tube	3176 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.020$
Detector resolution: 10.434 pixels mm ⁻¹	$\theta_{\text{max}} = 29.4^{\circ}, \ \theta_{\text{min}} = 3.6^{\circ}$
ω and ϕ scans	$h = -11 \rightarrow 11$
Absorption correction: multi-scan (<i>CrysAlis PRO</i> ; Oxford Diffraction, 2009)	$k = -14 \rightarrow 14$
$T_{\min} = 0.520, \ T_{\max} = 0.638$	$l = -11 \rightarrow 10$

18648 measured reflections

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.019$	$w = 1/[\sigma^2(F_0^2) + (0.0335P)^2 + 0.2787P]$ where $P = (F_0^2 + 2F_c^2)/3$
$wR(F^2) = 0.049$	$(\Delta/\sigma)_{\rm max} < 0.001$
<i>S</i> = 0.91	$\Delta \rho_{max} = 0.64 \text{ e} \text{ Å}^{-3}$
3330 reflections	$\Delta \rho_{\rm min} = -0.69 \text{ e } \text{\AA}^{-3}$
141 parameters	Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), Fc [*] =kFc[1+0.001xFc ² λ^3 /sin(2 θ)] ^{-1/4}
1 restraint	Extinction coefficient: 0.044 (2)
Primary atom site location: structure-invariant direct methods	Absolute structure: Flack (1983), 1359 Friedel pairs
Secondary atom site location: difference Fourier map	Flack parameter: -0.026 (17)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C2	0.5506 (4)	0.1519 (3)	0.1098 (4)	0.0581 (7)
H2A	0.4507	0.2056	0.0599	0.070*
H2B	0.6055	0.1385	0.0237	0.070*
C3	0.4953 (5)	0.0317 (3)	0.1635 (5)	0.0735 (9)
H3A	0.5487	-0.0365	0.1238	0.088*
H3B	0.3697	0.0229	0.1134	0.088*
C4	0.5545 (4)	0.0321 (3)	0.3627 (4)	0.0538 (6)
H4A	0.4590	0.0099	0.4012	0.065*
H4B	0.6495	-0.0256	0.4122	0.065*
C5	0.6143 (3)	0.1645 (2)	0.4157 (3)	0.0376 (4)
H5	0.5115	0.2133	0.4092	0.045*
C6	0.7478 (3)	0.1787 (2)	0.5989 (3)	0.0358 (4)
H6	0.7088	0.1294	0.6787	0.043*
C7	0.9331 (3)	0.13766 (19)	0.6181 (3)	0.0336 (4)

supplementary materials

H7	1.0133	0.1641	0.7321	0.040*
C8	0.9902 (3)	0.19544 (19)	0.4777 (3)	0.0340 (4)
H8	0.9914	0.2854	0.4913	0.041*
C9	0.8601 (3)	0.1627 (2)	0.2992 (3)	0.0395 (5)
H9A	0.8994	0.1978	0.2103	0.047*
H9B	0.8562	0.0737	0.2853	0.047*
C10	0.6736 (4)	0.3470 (2)	0.2554 (4)	0.0565 (7)
H10A	0.7083	0.3703	0.1592	0.085*
H10B	0.7517	0.3834	0.3603	0.085*
H10C	0.5572	0.3757	0.2352	0.085*
C11	1.1720 (3)	0.1536 (3)	0.4865 (3)	0.0477 (6)
H11A	1.1688	0.0662	0.4598	0.057*
H11B	1.2044	0.1977	0.3994	0.057*
C12	1.3095 (3)	0.1765 (3)	0.6658 (4)	0.0586 (7)
H12A	1.4233	0.1615	0.6611	0.088*
H12B	1.2894	0.1220	0.7492	0.088*
H12C	1.3020	0.2606	0.6998	0.088*
N1	0.6791 (2)	0.20968 (18)	0.2730 (2)	0.0373 (4)
01	0.7466 (2)	0.30534 (17)	0.6448 (3)	0.0537 (5)
H1	0.8265	0.3185	0.7367	0.080*
O2	0.9442 (2)	0.00727 (14)	0.6053 (2)	0.0444 (4)
H2	0.9405	-0.0249	0.6945	0.067*
I1	0.11548 (2)	0.38255 (2)	0.028309 (17)	0.05615 (7)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C2	0.0441 (13)	0.079 (2)	0.0373 (12)	-0.0013 (13)	-0.0032 (10)	-0.0131 (12)
C3	0.0651 (18)	0.070 (2)	0.072 (2)	-0.0226 (16)	0.0065 (16)	-0.0302 (17)
C4	0.0494 (13)	0.0441 (13)	0.0663 (17)	-0.0150 (11)	0.0180 (12)	-0.0109 (12)
C5	0.0291 (9)	0.0385 (10)	0.0444 (12)	-0.0017 (8)	0.0118 (8)	-0.0050 (9)
C6	0.0329 (9)	0.0395 (11)	0.0371 (10)	0.0043 (8)	0.0150 (8)	-0.0039 (9)
C7	0.0351 (10)	0.0352 (10)	0.0304 (10)	0.0048 (8)	0.0112 (8)	0.0018 (8)
C8	0.0288 (9)	0.0361 (10)	0.0351 (10)	0.0007 (8)	0.0088 (8)	0.0050 (8)
C9	0.0354 (10)	0.0501 (12)	0.0321 (10)	0.0021 (9)	0.0107 (8)	0.0033 (9)
C10	0.0488 (13)	0.0441 (14)	0.0606 (15)	0.0033 (9)	-0.0011 (11)	0.0162 (10)
C11	0.0309 (10)	0.0685 (17)	0.0435 (13)	0.0013 (10)	0.0127 (10)	0.0097 (11)
C12	0.0313 (11)	0.082 (2)	0.0570 (16)	-0.0028 (12)	0.0086 (11)	0.0059 (15)
N1	0.0317 (8)	0.0411 (9)	0.0318 (9)	-0.0007 (7)	0.0017 (7)	0.0010 (7)
01	0.0487 (10)	0.0491 (10)	0.0534 (10)	0.0136 (8)	0.0054 (8)	-0.0195 (8)
O2	0.0575 (10)	0.0344 (8)	0.0492 (10)	0.0114 (7)	0.0286 (8)	0.0114 (7)
I1	0.06754 (11)	0.06164 (10)	0.04070 (9)	-0.00802 (11)	0.02063 (6)	-0.01043 (10)

Geometric parameters (Å, °)

С2—С3	1.494 (5)	C8—C9	1.522 (3)
C2—N1	1.520 (3)	C8—C11	1.533 (3)
C2—H2A	0.9700	С8—Н8	0.9800
C2—H2B	0.9700	C9—N1	1.510 (3)

C3—C4	1.533 (5)	С9—Н9А	0.9700
С3—НЗА	0.9700	С9—Н9В	0.9700
С3—Н3В	0.9700	C10—N1	1.493 (3)
C4—C5	1.528 (3)	C10—H10A	0.9600
C4—H4A	0.9700	C10—H10B	0.9600
C4—H4B	0.9700	C10—H10C	0.9600
C5—N1	1.523 (3)	C11—C12	1.529 (4)
C5—C6	1.527 (3)	C11—H11A	0.9700
С5—Н5	0.9800	C11—H11B	0.9700
C6—O1	1.423 (3)	C12—H12A	0.9600
C6—C7	1.535 (3)	C12—H12B	0.9600
С6—Н6	0.9800	C12—H12C	0.9600
C7—O2	1.421 (3)	O1—H1	0.8200
С7—С8	1.519 (3)	O2—H2	0.8200
С7—Н7	0.9800		
C3—C2—N1	106.7 (2)	C7—C8—C11	113.04 (18)
C3—C2—H2A	110.4	C9—C8—C11	108.61 (19)
N1—C2—H2A	110.4	С7—С8—Н8	108.5
C3—C2—H2B	110.4	С9—С8—Н8	108.5
N1—C2—H2B	110.4	С11—С8—Н8	108.5
H2A—C2—H2B	108.6	N1—C9—C8	112.42 (18)
C2—C3—C4	107.2 (2)	N1—C9—H9A	109.1
С2—С3—НЗА	110.3	С8—С9—Н9А	109.1
С4—С3—НЗА	110.3	N1—C9—H9B	109.1
С2—С3—Н3В	110.3	С8—С9—Н9В	109.1
C4—C3—H3B	110.3	H9A—C9—H9B	107.9
НЗА—СЗ—НЗВ	108.5	N1—C10—H10A	109.5
C5—C4—C3	104.9 (2)	N1-C10-H10B	109.5
C5—C4—H4A	110.8	H10A—C10—H10B	109.5
C3—C4—H4A	110.8	N1-C10-H10C	109.5
C5—C4—H4B	110.8	H10A-C10-H10C	109.5
C3—C4—H4B	110.8	H10B-C10-H10C	109.5
H4A—C4—H4B	108.8	C12—C11—C8	112.0 (2)
N1—C5—C6	113.69 (17)	C12—C11—H11A	109.2
N1—C5—C4	104.21 (19)	C8—C11—H11A	109.2
C6—C5—C4	115.0 (2)	C12—C11—H11B	109.2
N1—C5—H5	107.9	C8—C11—H11B	109.2
С6—С5—Н5	107.9	H11A—C11—H11B	107.9
С4—С5—Н5	107.9	C11—C12—H12A	109.5
O1—C6—C5	106.78 (18)	C11—C12—H12B	109.5
O1—C6—C7	110.46 (18)	H12A—C12—H12B	109.5
C5—C6—C7	114.51 (17)	C11—C12—H12C	109.5
O1—C6—H6	108.3	H12A—C12—H12C	109.5
С5—С6—Н6	108.3	H12B—C12—H12C	109.5
С7—С6—Н6	108.3	C10—N1—C9	110.1 (2)
O2—C7—C8	108.01 (17)	C10—N1—C2	109.6 (2)
O2—C7—C6	111.47 (18)	C9—N1—C2	109.31 (19)
C8—C7—C6	110.88 (17)	C10—N1—C5	112.8 (2)
O2—C7—H7	108.8	C9—N1—C5	111.69 (16)

supplementary materials

108.8	C2—N1—C5	103.01 (19)
108.8	С6—О1—Н1	109.5
109.65 (17)	С7—О2—Н2	109.5
13.6 (3)	C7—C8—C9—N1	60.6 (2)
10.0 (3)	C11-C8-C9-N1	-175.43 (19)
-29.6 (3)	C7—C8—C11—C12	-54.9 (3)
-154.8 (2)	C9—C8—C11—C12	-176.8 (2)
77.7 (2)	C8—C9—N1—C10	71.0 (2)
-162.2 (2)	C8—C9—N1—C2	-168.5 (2)
-44.9 (3)	C8—C9—N1—C5	-55.1 (2)
75.2 (3)	C3-C2-N1-C10	-152.2 (3)
168.90 (18)	C3—C2—N1—C9	87.0 (3)
-70.5 (2)	C3—C2—N1—C5	-31.8 (3)
-70.7 (2)	C6-C5-N1-C10	-78.1 (2)
49.9 (2)	C4—C5—N1—C10	155.86 (19)
66.0 (2)	C6—C5—N1—C9	46.5 (2)
-56.5 (2)	C4—C5—N1—C9	-79.5 (2)
-55.4 (2)	C6—C5—N1—C2	163.7 (2)
-177.79 (19)	C4—C5—N1—C2	37.7 (2)
	108.8 $109.65 (17)$ $13.6 (3)$ $10.0 (3)$ $-29.6 (3)$ $-154.8 (2)$ $77.7 (2)$ $-162.2 (2)$ $-44.9 (3)$ $75.2 (3)$ $168.90 (18)$ $-70.5 (2)$ $-70.7 (2)$ $49.9 (2)$ $66.0 (2)$ $-56.5 (2)$ $-77.79 (19)$	108.8 $C2-N1-C5$ 108.8 $C6-O1-H1$ $109.65 (17)$ $C7-O2-H2$ $13.6 (3)$ $C7-C8-C9-N1$ $10.0 (3)$ $C11-C8-C9-N1$ $-29.6 (3)$ $C7-C8-C11-C12$ $-154.8 (2)$ $C9-C8-C11-C12$ $77.7 (2)$ $C8-C9-N1-C10$ $-162.2 (2)$ $C8-C9-N1-C2$ $-44.9 (3)$ $C3-C2-N1-C5$ $75.2 (3)$ $C3-C2-N1-C5$ $70.5 (2)$ $C6-C5-N1-C10$ $49.9 (2)$ $C4-C5-N1-C10$ $66.0 (2)$ $C6-C5-N1-C9$ $-56.5 (2)$ $C4-C5-N1-C2$ $-177.79 (19)$ $C4-C5-N1-C2$

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
O1—H1…I1 ⁱ	0.82	2.80	3.6187 (18)	173.
O2—H2…I1 ⁱⁱ	0.82	2.67	3.4798 (16)	172.
	. 1			

Symmetry codes: (i) *x*+1, *y*, *z*+1; (ii) -*x*+1, *y*-1/2, -*z*+1.

Fig. 1

